• 当前位置: 

    锰基复合电极的制备及其电化学性能研究

    锰基复合电极的制备及其电化学性能研究

    狼人三少

    4

    0

    4.0分

    共27页 2021-10-31 5知币
    VIP免费
    锰基复合电极的制备及其电化学性能研究
    使用水 0 下制锰的。只
    利用高锰酸钾和乙酸乙酯两种原料,采用溶剂热法制得二氧化锰纳米片
    分别电镜SEMX射线XRD
    及循环测试等测试手段对材料的形貌、结构做出表征。运用恒电流充放
    电的方法对材料的电化学性能进行测试。
    (1) 在空气中和在氩气中500 温度下烧,400 mA g电流密度
    下的循环性能测试曲线。在空气中500 烧时,其电极的储锂性能最
    好。
    2)在以 PF 27表面活性剂的验中水和乙醇的比变化
    会影响锰的价态和形貌,进而影响材料的储锂性能。只有水和乙醇含量
    分别为30 ml 和5 ml 时,电极方能达到最佳的储锂性能。
    (3)从放电容量方面来看,电流密度为 600 mA g中,各比例
    环性 ml ml 乙醇所制物在
    前200圈具有最高的放电容量,但是在140圈以后,电池的放电容
    量逐渐减低,这可能是在长循环过程中,材料出现粉化情况造成的。
    (4 )高锰酸钾水溶液和乙酸乙酯混合,在85 温度下冷凝回流所
    制得的材料,400 mA g电流密度下的循环性能测试曲线可以看出,
    在反应了22小时后,但电极容量逐渐降低,所以考虑进行硫化处理。
    硫化处理后可以看出电极容量明显提升,初始库伦效率也明显提升,但
    仍然未解决容量随着循环次数的增加而减小的问题。
    关键词:锂电池负极材料;钠电池负极材料;电化学性能;纳米棒;
    纳米片
    Abstract The nanorod—like structure of manganese dioxide was
    prepared by hydrothermal method at 1 6 0 °C. Using only potassium
    permanganate and ethyl acetate as raw materials, MnO nanosheets were
    prepared by solvothermal method. The scanning electron microscopy
    SEM , X—ray diffraction XRD , battery charge and discharge, and
    cyclic testing were used. Characterize the topography and structure of the
    material. The electrochemical properties of the material were tested using a
    galvanostatic charge—discharge method.
    (1) Cycle performance test curves at a current density of 400 mA g
    in air and at a temperature of °C in argon. When burned in air at
    500°C, the electrode has the best lithium storage performance.
    (2) In the experiment of using PF 127 as a surfactant, the change
    of the ratio of water and ethanol will affect the valence and morphology of
    manganese, and then affect the lithium storage performance of the material.
    Only when the water and ethanol contents were 3 0 ml and ml,
    respectively, the electrode could achieve the best lithium storage performance.
    (3) From the discharge capacity point of view, the current density is
    600 mA g, and the long—cycle performance of each ratio has the highest
    discharge in the first laps of the oxides of manganese produced in a
    solution of ml of water and ml of ethanol.but After laps, the
    discharge capacity of the battery gradually decreased, which may be due to the
    powdering of the material during the long cycle.
    Potassium permanganate solution and ethyl acetate are mixed and
    the resulting material is condensed and refluxed at a temperature of °C.
    The cycle performance test curve at a current density of 400 mA g— can
    be seen after 22 hours of reaction. However, the electrode capacity gradually
    decreases, so consider the sulfidation treatment. After the sulfidation treatment,
    it can be seen that the electrode capacity is significantly increased, and the
    initial coulombic efficiency is also significantly increased, but the problem of
    the decrease in capacity with an increase in the number of cycles is still not
    resolved.
    Keywords lithium battery anode material; sodium battery anode
    material; electrochemical performance;nanorod; nanosheet
    1.1锂电池的发展历史
    离子较高锂金年引
    电池应用领域,并在1970年进入锂一次电池商业开发阶段。从20
    世纪年以来,随着负极材料、正极材料以及电解质的变革,两种锂电池
    不断发展并且进入商业化阶段。今天,锂电池技术随着时代在持续不断
    地发展,正在一步步的改善人们的生活。随着社会的不断发展以及技术
    的进步,人们对资的利用度加,开采量也在不断的增,然而不合
    理的开采以及应用使资其是化学能问题成为
    界重视量开发,以其高效的
    来逐渐能等等,
    性能性能
    比容量高、有较长的寿等等,这使得其关增高。
    高性能电以锂离子电池为佳,锂离子电池具备高性能电
    优势之外,而锂电池又被氛围一次电池以及二
    次电池两种,其中一次电池是世纪中开始研发的,不
    立即下载
    评论(0)
    没有更多评论了哦~